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Abstract
Full configuration interaction calculations for two electrons in narrow semiconductor nanorods
are carried out employing different orbital basis sets. It is shown that the usual configurations
built from single-particle states cannot yield a correct singlet–triplet energetic order regardless
of the basis size, as they miss the correlation energy. Mean-field optimized orbitals partially
correct this drawback. A new approach is introduced, based on a simple variational procedure,
which yields robust results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dots (QDs) are artificial semiconductor structures
with sizes a few tens of nanometers. They are often modeled
as local perturbations of the periodic crystal field of the
semiconductor surrounding matrix, using envelope function
and effective mass approximations to describe their electronic
structure [1, 2]. Within this approach the details of the
unit cell are integrated out, so that only a macroscopic
(or envelope) description of the system remains. Thus,
the interaction between conduction electrons and atomic
core electrons and nuclei is averaged as the interaction
with a continuous polarizable medium. Likewise, Coulomb
interaction between carriers is assumed to be screened by the
dielectric constant of the QD bulk material [3]. The large
value of the semiconductor dielectric constant coming into
the Coulomb term (typically 10–14), along with the small
value of the electron effective mass coming into the kinetic
energy term, often lead to situations in which the separation
between discrete single-particle (SP) levels exceeds by far
the characteristic interaction energy between particles. As a
consequence, SP descriptions of the many-body problem may
be used, treating the Coulomb interaction between conduction
electrons as a perturbation [4–6].

A better account of the two-particle interaction can
be achieved through diagonalization of the many-body
Hamiltonian in the basis set of non-interacting configurations.

This is the so-called full configuration interaction (FCI)
method, which plays a central role in quantum chemistry [7].
FCI provides benchmark results for the ground state energy
and wavefunction, as well as for the description of excited
states, as it is inferred from the McDonald theorem [8].
The drawback of the approach is its computational cost,
originating from its often slow convergence. The key for
convergence is the selection of a suitable monoelectronic basis
set. As showed by Löwdin and Shull [9], the basis of natural
orbitals is the one which requires the fewest configurations to
achieve a given accuracy in the energy. Natural orbitals are
the orbitals that diagonalize the one-particle density matrix.
Therefore, exact natural orbitals should be extracted from
the FCI wavefunction. Alternatively, one may use single-
particle (SP) orbitals, i.e. the eigenfunctions of the one-
body operator coming into the many-body Hamiltonian. This
approach is quite common in few-electron and excitonic QD
calculations, where convergence problems do not usually
arise [4, 5, 10].

In this paper, however, we identify a QD system where
correlation energies are so strong that the basis choice becomes
critical for overcoming slow convergence issues. Namely, we
study narrow rod-shaped QDs (nanorods, NRs) [11, 12]. As
recently shown, the large aspect ratio of these semiconductor
structures is responsible for some remarkably strong Coulomb
interactions [13–15]. Here we demonstrate that, even in the
simplest case of two interacting electrons, the CI method based
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on SP orbitals (SP-CI) fails to converge. Indeed, for long rods
it predicts a triplet ground state, thus violating a fundamental
theorem for two-body exact functions [16]. To solve this
problem, we follow quantum chemistry CI methods and
replace the regular SP orbitals by effective orbitals obtained
through mean-field calculations, either Hartree–Fock (HF-
CI) [7] or Kohn–Sham density functional theory (KS-CI) [17].
The suitability of using these mean-field optimized orbitals is
discussed and compared with a new, simpler approach based
on a two-fold variational procedure.

2. Theory

The Hamiltonian of interacting conduction electrons in a QD
reads

H =
∑

i

T (i) + vc(i) +
∑

j<i

1

εri j
=

∑

i

h(i) +
∑

j<i

g(i, j),

(1)
where T = − 1

2m∗ ∇2 is the kinetic energy operator, vc the
spatial confining potential, m∗ the effective mass and ε the
dielectric constant.

In order to carry out a CI calculation, one first has to
select a given one-electron basis set {φp}M

p=1 and then build all
possible N-body Salter determinants �α = det{φ1φ2 · · · φN }
out of them. In a second step, the projection of Hamiltonian (1)
onto the basis set of Slater determinants (or onto a subset
of spin- and symmetry-adapted configurations) is carried out
yielding matrix elements 〈�α|H|�β〉. The last step is the
diagonalization.

For practical purposes the one-electron basis set is taken
as orthogonal, although many-body approaches based on
overlapping orbitals, as for example the generalized valence
bond (GVB), have been successfully developed in quantum
chemistry [7, 18]. A possible orbital choice is the SP states,
i.e. the eigenfunctions of the one-electron Hamiltonian h. We
must select a finite basis set. The natural choice is the M
lowest-energy eigenvectors. This truncation of the basis set
implies a projection of Hamiltonian (1) onto the corresponding
FCI space yielding a model Hamiltonian that, in second
quantization language, reads

HSP =
M∑

p

εpa+
p ap +

M∑

pqrs

gpqrsa
+
p a+

q ar as, (2)

where εp = h pp is the pth eigenvalue of h, gpqrs is
the two-electron integral and a+

p , aq the usual fermion
creator/annihilator operators.

Alternatively, we may employ another M-dimensional
orthogonal basis set {χp}M

p=1. In this case, Hamiltonian (1)
turns into

HX =
M∑

pq

h pqa+
p aq +

M∑

pqrs

gpqrsa
+
p a+

q ar as, (3)

where off-diagonal h pq terms arise because χp is no longer an
eigenfunction of h.

We may consider {χp} as related to a given vm f (r) poten-
tial operator which is added and subtracted to Hamiltonian (1),

H =
∑

i

h(i) + vm f (i) − vm f (i) +
∑

j<i

g(i, j)

=
∑

i

(
h(i) + vm f (i) +

∑

j<i

g(i, j) − vm f (i)

)

=
∑

i

f (i) +
∑

j<i

ḡ(i, j). (4)

Now we determine {χp} from the eigenvalue equation
f (r)χp(r) = ε̄pχp(r) and rewrite equation (3) as

HX =
M∑

p

ε̄pa+
p ap +

M∑

pqrs

ḡpqrsa+
p a+

q ar as . (5)

HF, DFT and, in general, any mean-field calculation are
particular cases of this procedure. For example, in HF,

ε̄p = h pp +
M∑

q

(
〈pq| 1

εr12
|pq〉 − 〈pq| 1

εr12
|qp〉

)
. (6)

Note that h pq + v
m f
pq = 〈p|h + vm f |q〉 = ε̄p〈p|q〉 = ε̄pδpq .

Within the framework of this procedure, our approach to
deal with strongly correlated regimes is the use of a variational
potential, i.e. a potential depending on parameters that allow
optimization of the orbital basis set in the CI process.

The advantage of adding a mean-field potential is that,
contrary to the SP orbitals which disregard electron–electron
interaction, HF orbitals include it somehow averaged in
the Coulomb and exchange terms, and KS orbitals further
account for some of the correlation through the corresponding
functional. This has proved useful in describing many-electron
QDs [19, 20]. In our approach, all terms in Hamiltonian (1) are
treated on an equal footing to optimize the potential and hence
the orbital basis set.

It is worth noting that the projected Hamiltonian (3) is not
defined by the selected orbital basis set but rather by the linear
space that it generates. Thus, for example, in [19], where HF
spin orbitals of an N-electron system are expressed as a linear
combination of a set of K SP states, a FCI expansion which
employs either K -dimensional basis set yields identical result.
The advantage of the strategy presented in [19] relies on a
further truncation of the HF basis set.

3. Results and discussion

We carry out calculations for the lowest-lying singlet and
triplet states of a two-electron semiconductor CdSe NR. The
rod is composed of a cylinder of radius R = 20 Å and variable
length L, attached to two hemispherical caps of the same radius
R at the extremes. The material parameters are effective mass
m∗ = 0.13, dielectric constant ε = 9.2 and confining potential
vc = 4 eV. The dominant electronic configurations for the
studied singlet and triplet states are σ 2

1 and σ1σ2, respectively,
where σ1, σ2 are the lowest-lying and first excited orbitals
with zero z-component of the angular momentum (Mz = 0).
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Figure 1. FCI calculations, employing a 1-6-1 SP basis set, of the
singlet (solid line) and triplet (dashed line) states of a R = 20 Å
two-electron semiconductor CdSe NR versus the length L . Inset:
close-up of the large L region.

We have checked that, as expected, already in the case of a
short NR, many σ (Mz = 0) SP states lie energetically below
the first π (Mz = ±1) energy level, and that higher angular
momentum states are much more excited. Then we employ a
basis set 1-n-1 in the CI calculations, i.e. a basis set including
the n lowest-lying σ and the lowest-lying degenerate pair of π

orbitals, the last orbital pair making, in all studied cases, a very
small contribution to the singlet and triplet CI wavefunctions.

Figure 1 shows a series of SP-CI calculations (basis set 1-
6-1) of the singlet and triplet states of a R = 20 Å two-electron
semiconductor CdSe NR versus L. At first glance, the results
seem reasonable. At L = 0 (a sphere) the singlet state lies
energetically far below the triplet state, and the contributions
to the CI expansion of configurations other than the dominant
one are extremely small. As L increases, the energetic
singlet–triplet gap �TS decreases, the contribution of excited
configurations to the CI wavefunction increases and, in the
large L limit, a singlet–triplet degeneration occurs. However,
a closer view reveals that beyond L = 170 Å the triplet
state becomes the ground state (see inset in figure 1). This
fact is a violation of a known theorem, attributed to Wigner,
stating that any general two-particle Hamiltonian including
a symmetric and real potential energy operator has a singlet
ground state [16]. Therefore, the result is qualitatively wrong.
One may relate the failure to the truncation of the orbital basis
set. In order to check it, we ran a series of SP-CI calculations
of the singlet–triplet energy gap �TS in an L = 200 Å NR
versus the size n of the (1-n-1) basis set. The results, shown
in figure 2, do not allow any finite n yielding the theoretically
expected singlet ground state.

We now turn our attention to the wavefunction. The inset
in figure 2 shows a profile of the FCI singlet (solid line) and
triplet (dashed line) charge densities along the NR vertical axis.
We can observe that the triplet and, to a lesser extent, the
singlet state develop a valley in the electronic density profile
around the rod center. The presence of this valley allows
the interacting electrons to reduce the repulsion energy, hence
stabilizing the states. This groove is already present in the
independent-particle description of the triplet state (through the
σ2 orbital), but not in the singlet ground state, where it is a

Figure 2. FCI singlet–triplet energy gap �TS, corresponding to a
CdSe R = 20 Å, L = 200 Å NR, calculated with a SP 1-n-1 basis
set versus n. Inset: ρ = 0 profile of the FCI singlet (solid line) and
triplet (dashed line) charge densities along the NR z-axis.

pure correlation effect [15]. In the case of a poor correlation
description, the singlet valley is not deep enough and the triplet
is more stable, leading to the triplet ground state predicted
above.

Since the singlet state has gerade symmetry and only
double excitations to ungerade orbitals may contribute to
the formation of the central valley in the density profile of
the singlet, we explore the possibility of carrying out a CI
expansion using gerade orbitals with an in-built valley. A
first attempt is to follow a recent approach proposed by
Abolfath and Hawrylak of using HF orbitals [19]. However,
the approach is useless in our case, because in this scheme
HF orbitals are expanded in terms of a (large) SP basis set
and, as shown in figure 2, even an extremely large (finite) SP
basis set cannot prevent the singlet–triplet reversal. Note that
gerade/ungerade HF orbitals would be linear combinations of
gerade/ungerade SP orbitals. Therefore, no gerade HF orbital
developing a valley can be obtained as a linear combination
of SP orbitals. We then take a different approach and
carry out numerical HF calculations, build a many-electron
Hamiltonian (5) out of the M lowest-lying HF eigenvectors
and repeat the calculations shown in figure 1 with this new
orbital basis set. In particular, the results collected in figure 3
correspond to a 1-6-1 HF basis set. One can see that HF-
CI outperforms SP-CI. Indeed, at L = 170 Å, HF-CI clearly
predicts a singlet ground state. All the same, a singlet–triplet
crossing is observed shortly after L = 200 Å, indicating that
the basis set is still insufficient.

We investigate in some more detail the large L region.
To this end, we consider a L = 200 Å NR, and carry out
calculations employing a large basis set (1-10-1). In the
first instance we run mean-field HF and KS (in the local
density approximation) calculations. The corresponding mean-
field potentials are represented in figure 4 left and center,
respectively. We see that both have a similar shape, i.e. a profile
versus z resembling a symmetric hill with the top at the rod
center. In figure 4 (right) we show a simplified potential vtri,
composed of a triangle of height H along the NR z-axis. All
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Figure 3. FCI calculations, employing a 1-6-1 HF basis set, of the
singlet (solid line) and triplet (dashed line) states of a R = 20 Å
two-electron semiconductor CdSe NR versus the length L . Inset:
close-up of the large L region.

three potentials have a common feature: they destabilize the
central region of the NR. In the case of HF and KS, the mean-
field potentials are optimized in a self-consistent procedure. As
far as the third potential is concerned, we optimized the height
H of vtri variationally, i.e. we perform FCI calculations with
states obtained as eigenvectors of a modified SP Hamiltonian,
which adds vtri(H ) to the confining potential, and then select
variationally the best H . This optimization is shown in figure 5
for a n = 10 basis set. We represent singlet and triplet
FCI energies versus the triangle height H . For comparison,
horizontal lines representing HF-FCI and KS-FCI are enclosed.
Several relevant conclusions that may be drawn from this
figure: (i) all three potentials recover the correct singlet/triplet
energetic ordering; (ii) orbital optimization affects the singlet
state far more than the triplet; (iii) from the variational
principle and McDonald’s theorem, we conclude that vKS

outperforms vHF and the variational potential vtri outperforms
both vHF and vKS. The good performance of vKS is remarkable
in view of its typical failures in very-few-electron systems [21].
Also, we note that in this system HF-CI gives better results than
the SP-CI scheme, contrary to the expectations of [19] for a
small number of electrons. The singlet–triplet �TS gap yielded
by vHF, vKS and vtri through the FCI calculations are 0.2, 1.4
and 3.5 meV, respectively.

As pointed out in section 1, the correlation energies in
the QD system under study are so strong that the choice of

Figure 5. FCI optimization of the variational triangle-like vtri(H)
potential versus its height H , in the case of a R = 20 Å, L = 200 Å
CdSe NR, employing a 1-10-1 basis set. Singlet (dots) and triplet
(crosses) energies are represented. Horizontal solid (singlet) and
dashed (triplet) lines representing HF-FCI (dark lines) and KS-FCI
(light lines) are also enclosed.

Figure 6. ρ = 0 z-profiles of the lowest-lying SP, HF, KS and
variationally optimized (vtri) orbitals in the NR investigated in
figure 5. Solid, dashed and dotted lines are used for the lowest, first
excited and second excited orbital, respectively.

a single-particle basis set becomes critical for a correct CI
description. This is nicely shown in figure 6, where the
ρ = 0 z-profiles of the orbitals with largest contribution

Figure 4. Mean-field HF (left), KS (center) and variationally optimized vtri (right) potentials of a R = 20 Å, L = 200 Å two-electron CdSe
NR.
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Figure 7. FCI singlet–triplet gap �TS obtained with SP, vHF and vtri

versus L of a R = 20 Å two-electron semiconductor CdSe NR. The
inset shows the differences between the calculated SP and vHF and
the vtri singlet–triplet gaps.

to the CI are illustrated. The lowest-lying (σ ) SP orbital
shows a prominent maximum at the NR center. Therefore, the
a priori dominant σ 2 configuration of the lowest-lying two-
body singlet state incorporates a strong Coulomb repulsion.
Meanwhile, the same figure shows that HF and KS optimized
orbitals present a central plateau instead. The observed plateau
is the result of the mean-field optimization which, as pointed
out in section 2, accounts for two-body interactions in an
averaged way. In our approach, all terms in the many-body
Hamiltonian are treated on an equal footing to optimize the
orbital basis set and, as shown in figure 6, the result of the
CI optimization yields a lowest-lying σ orbital with a valley
at the NR center. Consequently, the σ 2 configuration already
provides a qualitatively correct description of the central valley
displayed by the two-body singlet ground state (see inset in
figure 2). Similar arguments can be made for the low-lying
excited orbitals, also shown in figure 6.

In the next step, in order to show the performance of our
approach compared with standard mean-field calculations, we
consider again the 1-6-1 basis set employed in figures 1 and 3,
run calculations optimizing vtri in the region 100 Å � L �
250 Å, and compare the results yielded by vtri with the SP-CI
and HF-CI methods. The combined results are summarized
in figure 7, where the FCI singlet–triplet gap �TS obtained
from SP, vHF and vtri versus L, is represented. One can see
that only in the case of vtri is the correct null asymptotic limit
of the singlet–triplet gap obtained. In the inset, the difference
between the calculated SP or HF gaps and the benchmark one
(vtri) is displayed. The inset shows that, within this region,
the gap error is approximately constant for both approaches. It
mainly comes from a deficient description of the singlet state
(see figure 5).

To close this section we would like to note that the poorly
correlated description of SP-CI is exclusive to NRs with a
large aspect ratio. As a matter of fact, SP-CI calculations for
a R = 50 Å, L = 200 Å (total length 300 Å) CdSe NR
employing a 1-6-1 basis set yields the correct singlet–triplet
order, contrary to the R = 20 Å NR we have analyzed in detail.

4. Conclusion

We have shown that the FCI correlation energy of two electrons
in quasi-one-dimensional NRs calculated with the usual orbital
basis set of numerical eigenfunctions of the one-electron
operator h arising in the many-body Hamiltonian (SP-FCI
scheme) leads to the wrong singlet–triplet energetic order.
Irrespective of basis size, the correlation energy of the NR
is very sensitive to the choice of orbitals. Thus, mean-field-
CI approaches that somehow take into account an averaged
electron–electron interaction in the orbital optimization can
partially correct this drawback. A new CI scheme is proposed
in which the mean-field potential is replaced by a simple
triangular potential, with the triangle height as a variational
parameter. The latter approach outperforms mean-field-CI
schemes, yielding robust results.
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